Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
146 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Long-Tailed Classification with Gradual Balanced Loss and Adaptive Feature Generation (2203.00452v1)

Published 28 Feb 2022 in cs.CV and cs.LG

Abstract: The real-world data distribution is essentially long-tailed, which poses great challenge to the deep model. In this work, we propose a new method, Gradual Balanced Loss and Adaptive Feature Generator (GLAG) to alleviate imbalance. GLAG first learns a balanced and robust feature model with Gradual Balanced Loss, then fixes the feature model and augments the under-represented tail classes on the feature level with the knowledge from well-represented head classes. And the generated samples are mixed up with real training samples during training epochs. Gradual Balanced Loss is a general loss and it can combine with different decoupled training methods to improve the original performance. State-of-the-art results have been achieved on long-tail datasets such as CIFAR100-LT, ImageNetLT, and iNaturalist, which demonstrates the effectiveness of GLAG for long-tailed visual recognition.

Citations (2)

Summary

We haven't generated a summary for this paper yet.