Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
123 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Quantum Riemann-Hilbert problems for the resolved conifold (2203.00294v2)

Published 1 Mar 2022 in math.AG and hep-th

Abstract: We study the quantum Riemann-Hilbert problems determined by the refined Donaldson-Thomas theory on the resolved conifold. Using the solutions to classical Riemann-Hilbert problems by Beidgeland, we give explicit solutions in terms of multiple sine functions with unequal parameters. The new feature of the solutions is that the valid region of the quantum parameter $q{\frac{1}{2}}=\exp(\pi i \tau)$ varies on the space of stability conditions and BPS $t$-plane. Comparing the solutions with the partition function of refined Chern-Simons theory and invoking large $N$ string duality, we find that the solution contains the non-perturbative completion of the refined topological string on the resolved conifold. Therefore solving the quantum Riemann-Hilbert problems provides a possible non-perturbative definition for the Donaldson-Thomas theory.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)