Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
123 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
51 tokens/sec
2000 character limit reached

Band structures under non-Hermitian periodic potentials: Connecting nearly-free and bi-orthogonal tight-binding models (2203.00247v3)

Published 1 Mar 2022 in quant-ph, cond-mat.other, and physics.optics

Abstract: We explore band structures of one-dimensional open systems described by periodic non-Hermitian operators, based on continuum models and tight-binding models. We show that imaginary scalar potentials do not open band gaps but instead lead to the formation of exceptional points as long as the strength of the potential exceeds a threshold value, which is contrast to closed systems where real potentials open a gap with infinitesimally small strength. The imaginary vector potentials hinder the separation of low energy bands because of the lifting of degeneracy in the free system. In addition, we construct tight-binding models through bi-orthogonal Wannier functions based on Bloch wavefunctions of the non-Hermitian operator and its Hermitian conjugate. We show that the bi-orthogonal tight-binding model well reproduces the dispersion relations of the continuum model when the complex scalar potential is sufficiently large.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.