Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Testability and Goodness of Fit Tests in Missing Data Models (2203.00132v2)

Published 28 Feb 2022 in stat.ME, cs.LG, and stat.ML

Abstract: Significant progress has been made in developing identification and estimation techniques for missing data problems where modeling assumptions can be described via a directed acyclic graph. The validity of results using such techniques rely on the assumptions encoded by the graph holding true; however, verification of these assumptions has not received sufficient attention in prior work. In this paper, we provide new insights on the testable implications of three broad classes of missing data graphical models, and design goodness-of-fit tests for them. The classes of models explored are: sequential missing-at-random and missing-not-at-random models which can be used for modeling longitudinal studies with dropout/censoring, and a no self-censoring model which can be applied to cross-sectional studies and surveys.

Citations (6)

Summary

We haven't generated a summary for this paper yet.