Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Evaluating the Adversarial Robustness of Adaptive Test-time Defenses (2202.13711v2)

Published 28 Feb 2022 in cs.LG, cs.CR, and cs.CV

Abstract: Adaptive defenses, which optimize at test time, promise to improve adversarial robustness. We categorize such adaptive test-time defenses, explain their potential benefits and drawbacks, and evaluate a representative variety of the latest adaptive defenses for image classification. Unfortunately, none significantly improve upon static defenses when subjected to our careful case study evaluation. Some even weaken the underlying static model while simultaneously increasing inference computation. While these results are disappointing, we still believe that adaptive test-time defenses are a promising avenue of research and, as such, we provide recommendations for their thorough evaluation. We extend the checklist of Carlini et al. (2019) by providing concrete steps specific to adaptive defenses.

Citations (60)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com