Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Impact of Explanations on Layperson Trust in Artificial Intelligence-Driven Symptom Checker Apps: Experimental Study (2202.13444v1)

Published 27 Feb 2022 in cs.HC

Abstract: To achieve the promoted benefits of an AI symptom checker, laypeople must trust and subsequently follow its instructions. In AI, explanations are seen as a tool to communicate the rationale behind black-box decisions to encourage trust and adoption. However, the effectiveness of the types of explanations used in AI-driven symptom checkers has not yet been studied. Social theories suggest that why-explanations are better at communicating knowledge and cultivating trust among laypeople. This study ascertains whether explanations provided by a symptom checker affect explanatory trust among laypeople (N=750) and whether this trust is impacted by their existing knowledge of disease. Results suggest system builders developing explanations for symptom-checking apps should consider the recipient's knowledge of a disease and tailor explanations to each user's specific need. Effort should be placed on generating explanations that are personalized to each user of a symptom checker to fully discount the diseases that they may be aware of and to close their information gap.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Claire Woodcock (2 papers)
  2. Brent Mittelstadt (14 papers)
  3. Dan Busbridge (23 papers)
  4. Grant Blank (1 paper)
Citations (24)