Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Induced dynamics of non-autonomous dynamical systems (2202.13345v1)

Published 27 Feb 2022 in math.DS

Abstract: Let $f_{0,\infty}={f_n}{n=0}{\infty}$ be a sequence of continuous self-maps on a compact metric space $X$. The non-autonomous dynamical system $(X,f{0,\infty})$ induces the set-valued system $(\mathcal{K}(X), \bar{f}{0,\infty})$ and the fuzzified system $(\mathcal{F}(X),\tilde{f}{0,\infty})$. We prove that under some natural conditions, positive topological entropy of $(X,f_{0,\infty})$ implies infinite entropy of $(\mathcal{K}(X),\bar{f}{0,\infty})$ and $(\mathcal{F}(X),\tilde{f}{0,\infty})$, respectively; and zero entropy of $(S1,f_{0,\infty})$ implies zero entropy of some invariant subsystems of $(\mathcal{K}(S1),\bar{f}_{0,\infty})$ and $(\mathcal{F}(S1),\tilde{f}_{0,\infty})$, respectively. We confirm that $(\mathcal{K}(I), \bar{f})$ and $(\mathcal{F}(I), \tilde{f})$ have infinite entropy for any transitive interval map $f$. In contrast, we construct a transitive non-autonomous system $(I, f_{0,\infty})$ such that both $(\mathcal{K}(I), \bar{f}{0,\infty})$ and $(\mathcal{F}(I), \tilde{f}{0,\infty})$ have zero entropy. We obtain that $(\mathcal{K}(X),\bar{f}{0,\infty})$ is chain weakly mixing of all orders if and only if $(\mathcal{F}1(X),\tilde{f}{0,\infty})$ is so, and chain mixing (resp. $h$-shadowing and multi-$\mathscr{F}$-sensitivity) among $(X,f_{0,\infty})$, $(\mathcal{K}(X),\bar{f}{0,\infty})$ and $(\mathcal{F}1(X),\tilde{f}{0,\infty})$ are equivalent, where $(\mathcal{F}1(X),\tilde{f}_{0,\infty})$ is the induced normal fuzzification.

Summary

We haven't generated a summary for this paper yet.