On the spectral radius of uniform weighted hypergraph (2202.13272v1)
Abstract: Let $\mathbb{Q}{k,n}$ be the set of the connected $k$-uniform weighted hypergraphs with $n$ vertices, where $k,n\geq 3$. For a hypergraph $G\in \mathbb{Q}{k,n}$, let $\mathcal{A}(G)$, $\mathcal{L} (G)$ and $\mathcal{Q} (G)$ be its adjacency tensor, Laplacian tensor and signless Laplacian tensor, respectively. The spectral radii of $\mathcal{A}(G)$ and $\mathcal{Q} (G)$ are investigated. Some basic properties of the $H$-eigenvalue, the $H{+}$-eigenvalue and the $H{++}$-eigenvalue of $\mathcal{A}(G)$, $\mathcal{L} (G)$ and $\mathcal{Q} (G)$ are presented. Several lower and upper bounds of the $H$-eigenvalue, the $H{+}$-eigenvalue and the $H{++}$-eigenvalue for $\mathcal{A}(G)$, $\mathcal{L} (G)$ and $\mathcal{Q} (G)$ are established. The largest $H{+}$-eigenvalue of $\mathcal{L} (G)$ and the smallest $H{+}$-eigenvalue of $\mathcal{Q} (G)$ are characterized. A relationship among the $H$-eigenvalues of $\mathcal{L} (G)$, $\mathcal{Q} (G)$ and $\mathcal{A} (G)$ is also given.