Papers
Topics
Authors
Recent
2000 character limit reached

Quantum Persistent Homology

Published 25 Feb 2022 in quant-ph | (2202.12965v1)

Abstract: Persistent homology is a powerful mathematical tool that summarizes useful information about the shape of data allowing one to detect persistent topological features while one adjusts the resolution. However, the computation of such topological features is often a rather formidable task necessitating the subsampling the underlying data. To remedy this, we develop an efficient quantum computation of persistent Betti numbers, which track topological features of data across different scales. Our approach employs a persistent Dirac operator whose square yields the persistent combinatorial Laplacian, and in turn the underlying persistent Betti numbers which capture the persistent features of data. We also test our algorithm on point cloud data.

Citations (22)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.