Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modulation and signal class labelling using active learning and classification using machine learning (2202.12930v1)

Published 23 Feb 2022 in eess.SP and cs.LG

Abstract: Supervised learning in ML requires labelled data set. Further real-time data classification requires an easily available methodology for labelling. Wireless modulation and signal classification find their application in plenty of areas such as military, commercial and electronic reconaissance and cognitive radio. This paper mainly aims to solve the problem of real-time wireless modulation and signal class labelling with an active learning framework. Further modulation and signal classification is performed with machine learning algorithms such as KNN, SVM, Naive bayes. Active learning helps in labelling the data points belonging to different classes with the least amount of data samples trained. An accuracy of 86 percent is obtained by the active learning algorithm for the signal with SNR 18 dB. Further, KNN based model for modulation and signal classification performs well over range of SNR, and an accuracy of 99.8 percent is obtained for 18 dB signal. The novelty of this work exists in applying active learning for wireless modulation and signal class labelling. Both modulation and signal classes are labelled at a given time with help of couplet formation from the data samples.

Citations (3)

Summary

We haven't generated a summary for this paper yet.