Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Venture Capital investments through the lens of Network and Functional Data Analysis (2202.12859v2)

Published 25 Feb 2022 in stat.AP and cs.SI

Abstract: In this paper we characterize the performance of venture capital-backed firms based on their ability to attract investment. The aim of the study is to identify relevant predictors of success built from the network structure of firms' and investors' relations. Focusing on deal-level data for the health sector, we first create a bipartite network among firms and investors, and then apply functional data analysis (FDA) to derive progressively more refined indicators of success captured by a binary, a scalar and a functional outcome. More specifically, we use different network centrality measures to capture the role of early investments for the success of the firm. Our results, which are robust to different specifications, suggest that success has a strong positive association with centrality measures of the firm and of its large investors, and a weaker but still detectable association with centrality measures of small investors and features describing firms as knowledge bridges. Finally, based on our analyses, success is not associated with firms' and investors' spreading power (harmonic centrality), nor with the tightness of investors' community (clustering coefficient) and spreading ability (VoteRank).

Citations (2)

Summary

We haven't generated a summary for this paper yet.