Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Induced Disjoint Paths and Connected Subgraphs for $H$-Free Graphs (2202.11595v3)

Published 23 Feb 2022 in math.CO, cs.CC, cs.DM, and cs.DS

Abstract: Paths $P_1,\ldots, P_k$ in a graph $G=(V,E)$ are mutually induced if any two distinct $P_i$ and $P_j$ have neither common vertices nor adjacent vertices. The Induced Disjoint Paths problem is to decide if a graph $G$ with $k$ pairs of specified vertices $(s_i,t_i)$ contains $k$ mutually induced paths $P_i$ such that each $P_i$ starts from $s_i$ and ends at $t_i$. This is a classical graph problem that is NP-complete even for $k=2$. We introduce a natural generalization, Induced Disjoint Connected Subgraphs: instead of connecting pairs of terminals, we must connect sets of terminals. We give almost-complete dichotomies of the computational complexity of both problems for H-free graphs, that is, graphs that do not contain some fixed graph H as an induced subgraph. Finally, we give a complete classification of the complexity of the second problem if the number k of terminal sets is fixed, that is, not part of the input.

Citations (4)

Summary

We haven't generated a summary for this paper yet.