Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Deep Metric Learning-Based Semi-Supervised Regression With Alternate Learning (2202.11388v2)

Published 23 Feb 2022 in cs.CV and cs.LG

Abstract: This paper introduces a novel deep metric learning-based semi-supervised regression (DML-S2R) method for parameter estimation problems. The proposed DML-S2R method aims to mitigate the problems of insufficient amount of labeled samples without collecting any additional sample with a target value. To this end, it is made up of two main steps: i) pairwise similarity modeling with scarce labeled data; and ii) triplet-based metric learning with abundant unlabeled data. The first step aims to model pairwise sample similarities by using a small number of labeled samples. This is achieved by estimating the target value differences of labeled samples with a Siamese neural network (SNN). The second step aims to learn a triplet-based metric space (in which similar samples are close to each other and dissimilar samples are far apart from each other) when the number of labeled samples is insufficient. This is achieved by employing the SNN of the first step for triplet-based deep metric learning that exploits not only labeled samples but also unlabeled samples. For the end-to-end training of DML-S2R, we investigate an alternate learning strategy for the two steps. Due to this strategy, the encoded information in each step becomes a guidance for learning phase of the other step. The experimental results confirm the success of DML-S2R compared to the state-of-the-art semi-supervised regression methods. The code of the proposed method is publicly available at https://git.tu-berlin.de/rsim/DML-S2R.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Adina Zell (1 paper)
  2. Gencer Sumbul (29 papers)
  3. Begüm Demir (61 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.