Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Variation Aware Training of Hybrid Precision Neural Networks with 28nm HKMG FeFET Based Synaptic Core (2202.10912v2)

Published 21 Feb 2022 in cs.ET, cs.AI, and cs.NE

Abstract: This work proposes a hybrid-precision neural network training framework with an eNVM based computational memory unit executing the weighted sum operation and another SRAM unit, which stores the error in weight update during back propagation and the required number of pulses to update the weights in the hardware. The hybrid training algorithm for MLP based neural network with 28 nm ferroelectric FET (FeFET) as synaptic devices achieves inference accuracy up to 95% in presence of device and cycle variations. The architecture is primarily evaluated using behavioral or macro-model of FeFET devices with experimentally calibrated device variations and we have achieved accuracies compared to floating-point implementations.

Summary

We haven't generated a summary for this paper yet.