Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A two-phase rank-based algorithm for low-rank matrix completion (2202.09405v2)

Published 18 Feb 2022 in math.OC, cs.NA, and math.NA

Abstract: Matrix completion aims to recover an unknown low-rank matrix from a small subset of its entries. In many applications, the rank of the unknown target matrix is known in advance. In this paper, first we revisit a recently proposed rank-based heuristic for "known-rank" matrix completion and establish a condition under which the generated sequence is quasi-Fej\'er convergent to the solution set. Then, by including an acceleration mechanism similar to Nesterov's acceleration, we obtain a new heuristic. Even though the convergence of such heuristic cannot be granted in general, it turns out that it can be very useful as a warm-start phase, providing a suitable estimate for the regularization parameter and a good starting-point, to an accelerated Soft-Impute algorithm. Numerical experiments with both synthetic and real data show that the resulting two-phase rank-based algorithm can recover low-rank matrices, with relatively high precision, faster than other well-established matrix completion algorithms.

Citations (1)

Summary

We haven't generated a summary for this paper yet.