Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Parameter Identification of a PN-Guided Incoming Missile Using an Improved Multiple-Model Mechanism (2202.09361v1)

Published 25 Jan 2022 in eess.SY, cs.AI, and cs.SY

Abstract: An active defense against an incoming missile requires information of it, including a guidance law parameter and a first-order lateral time constant. To this end, assuming that a missile with a proportional navigation (PN) guidance law attempts to attack an aerial target with bang-bang evasive maneuvers, a parameter identification model based on the gated recurrent unit (GRU) neural network is built in this paper. The analytic identification solutions for the guidance law parameter and the first-order lateral time constant are derived. The inputs of the identification model are available kinematic information between the aircraft and the missile, while the outputs contain the regression results of missile parameters. To increase the training speed and the identification accuracy of the Model, an output processing method called improved multiplemodel mechanism (IMMM) is proposed in this paper. The effectiveness of IMMM and the performance of the established model are demonstrated through numerical simulations under various engagement scenarios.

Citations (3)

Summary

We haven't generated a summary for this paper yet.