Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Faster change of order algorithm for Gröbner bases under shape and stability assumptions (2202.09226v2)

Published 18 Feb 2022 in cs.SC and math.AC

Abstract: Solving zero-dimensional polynomial systems using Gr\"obner bases is usually done by, first, computing a Gr\"obner basis for the degree reverse lexicographic order, and next computing the lexicographic Gr\"obner basis with a change of order algorithm. Currently, the change of order now takes a significant part of the whole solving time for many generic instances. Like the fastest known change of order algorithms, this work focuses on the situation where the ideal defined by the system satisfies natural properties which can be recovered in generic coordinates. First, the ideal has a \emph{shape} lexicographic Gr\"obner basis. Second, the set of leading terms with respect to the degree reverse lexicographic order has a \emph{stability} property; in particular, the multiplication matrix can be read on the input Gr\"obner basis. The current fastest algorithms rely on the sparsity of this matrix. Actually, this sparsity is a consequence of an algebraic structure, which can be exploited to represent the matrix concisely as a univariate polynomial matrix. We show that the Hermite normal form of that matrix yields the sought lexicographic Gr\"obner basis, under assumptions which cover the shape position case. Under some mild assumption implying $n \le t$, the arithmetic complexity of our algorithm is $O\tilde{~}(t{\omega-1}D)$, where $n$ is the number of variables, $t$ is a sparsity indicator of the aforementioned matrix, $D$ is the degree of the zero-dimensional ideal under consideration, and $\omega$ is the exponent of matrix multiplication. This improves upon both state-of-the-art complexity bounds $O\tilde{~}(tD2)$ and $O\tilde{~}(D\omega)$, since $\omega < 3$ and $t\le D$. Practical experiments, based on the libraries msolve and PML, confirm the high practical benefit.

Citations (14)

Summary

We haven't generated a summary for this paper yet.