Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

PISA: A Binary-Weight Processing-In-Sensor Accelerator for Edge Image Processing (2202.09035v1)

Published 18 Feb 2022 in cs.AR

Abstract: This work proposes a Processing-In-Sensor Accelerator, namely PISA, as a flexible, energy-efficient, and high-performance solution for real-time and smart image processing in AI devices. PISA intrinsically implements a coarse-grained convolution operation in Binarized-Weight Neural Networks (BWNNs) leveraging a novel compute-pixel with non-volatile weight storage at the sensor side. This remarkably reduces the power consumption of data conversion and transmission to an off-chip processor. The design is completed with a bit-wise near-sensor processing-in-DRAM computing unit to process the remaining network layers. Once the object is detected, PISA switches to typical sensing mode to capture the image for a fine-grained convolution using only the near-sensor processing unit. Our circuit-to-application co-simulation results on a BWNN acceleration demonstrate acceptable accuracy on various image datasets in coarse-grained evaluation compared to baseline BWNN models, while PISA achieves a frame rate of 1000 and efficiency of ~1.74 TOp/s/W. Lastly, PISA substantially reduces data conversion and transmission energy by ~84% compared to a baseline CPU-sensor design.

Citations (17)

Summary

We haven't generated a summary for this paper yet.