Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Error estimation and adaptivity for stochastic collocation finite elements Part II: multilevel approximation (2202.08902v1)

Published 17 Feb 2022 in math.NA and cs.NA

Abstract: A multilevel adaptive refinement strategy for solving linear elliptic partial differential equations with random data is recalled in this work. The strategy extends the a posteriori error estimation framework introduced by Guignard and Nobile in 2018 (SIAM J. Numer. Anal, 56, 3121--3143) to cover problems with a nonaffine parametric coefficient dependence. A suboptimal, but nonetheless reliable and convenient implementation of the strategy involves approximation of the decoupled PDE problems with a common finite element approximation space. Computational results obtained using such a single-level strategy are presented in part I of this work (Bespalov, Silvester and Xu, arXiv:2109.07320). Results obtained using a potentially more efficient multilevel approximation strategy, where meshes are individually tailored, are discussed herein. The codes used to generate the numerical results are available online.

Citations (3)

Summary

We haven't generated a summary for this paper yet.