Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The aperiodic Domino problem in higher dimension (2202.07377v1)

Published 15 Feb 2022 in cs.DM, cs.CC, and math.DS

Abstract: The classical Domino problem asks whether there exists a tiling in which none of the forbidden patterns given as input appear. In this paper, we consider the aperiodic version of the Domino problem: given as input a family of forbidden patterns, does it allow an aperiodic tiling? The input may correspond to a subshift of finite type, a sofic subshift or an effective subshift. arXiv:1805.08829 proved that this problem is co-recursively enumerable ($\Pi_01$-complete) in dimension 2 for geometrical reasons. We show that it is much harder, namely analytic ($\Sigma_11$-complete), in higher dimension: $d \geq 4$ in the finite type case, $d \geq 3$ for sofic and effective subshifts. The reduction uses a subshift embedding universal computation and two additional dimensions to control periodicity. This complexity jump is surprising for two reasons: first, it separates 2- and 3-dimensional subshifts, whereas most subshift properties are the same in dimension 2 and higher; second, it is unexpectedly large.

Citations (1)

Summary

We haven't generated a summary for this paper yet.