The aperiodic Domino problem in higher dimension (2202.07377v1)
Abstract: The classical Domino problem asks whether there exists a tiling in which none of the forbidden patterns given as input appear. In this paper, we consider the aperiodic version of the Domino problem: given as input a family of forbidden patterns, does it allow an aperiodic tiling? The input may correspond to a subshift of finite type, a sofic subshift or an effective subshift. arXiv:1805.08829 proved that this problem is co-recursively enumerable ($\Pi_01$-complete) in dimension 2 for geometrical reasons. We show that it is much harder, namely analytic ($\Sigma_11$-complete), in higher dimension: $d \geq 4$ in the finite type case, $d \geq 3$ for sofic and effective subshifts. The reduction uses a subshift embedding universal computation and two additional dimensions to control periodicity. This complexity jump is surprising for two reasons: first, it separates 2- and 3-dimensional subshifts, whereas most subshift properties are the same in dimension 2 and higher; second, it is unexpectedly large.