Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enhancing Cross-lingual Prompting with Dual Prompt Augmentation (2202.07255v2)

Published 15 Feb 2022 in cs.CL and cs.AI

Abstract: Prompting shows promising results in few-shot scenarios. However, its strength for multilingual/cross-lingual problems has not been fully exploited. Zhao and Sch\"utze (2021) made initial explorations in this direction by presenting that cross-lingual prompting outperforms cross-lingual finetuning. In this paper, we conduct an empirical exploration on the effect of each component in cross-lingual prompting and derive language-agnostic Universal Prompting, which helps alleviate the discrepancies between source-language training and target-language inference. Based on this, we propose DPA, a dual prompt augmentation framework, aiming at relieving the data scarcity issue in few-shot cross-lingual prompting. Notably, for XNLI, our method achieves 46.54% with only 16 English training examples per class, significantly better than 34.99% of finetuning. Our code is available at https://github.com/DAMO-NLP-SG/DPA.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Meng Zhou (33 papers)
  2. Xin Li (980 papers)
  3. Yue Jiang (104 papers)
  4. Lidong Bing (144 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.