Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Closed linear spaces consisting of strongly norm attaining Lipschitz mappings (2202.06855v2)

Published 14 Feb 2022 in math.FA

Abstract: Given a pointed metric space $M$, we study when there exist $n$-dimensional linear subspaces of $\operatorname{Lip}_0(M)$ consisting of strongly norm-attaining Lipschitz functionals, for $n\in\mathbb{N}$. We show that this is always the case for infinite metric spaces, providing a definitive answer to the question. We also study the possible sizes of such infinite-dimensional closed linear subspaces $Y$, as well as the inverse question, that is, the possible sizes of the metric space $M$ given that such a subspace $Y$ exists. We also show that if the metric space $M$ is $\sigma$-precompact, then the aforementioned subspaces $Y$ need to be always separable and isomorphically polyhedral, and we show that for spaces containing $[0,1]$ isometrically, they can be infinite-dimensional.

Summary

We haven't generated a summary for this paper yet.