Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Numerical scheme for Erdélyi-Kober fractional diffusion equation using Galerkin-Hermite method (2202.06156v1)

Published 12 Feb 2022 in math.NA, cs.NA, and math.AP

Abstract: The aim of this work is to devise and analyse an accurate numerical scheme to solve Erd\'elyi-Kober fractional diffusion equation. This solution can be thought as the marginal pdf of the stochastic process called the generalized grey Brownian motion (ggBm). The ggBm includes some well-known stochastic processes: Brownian motion, fractional Brownian motion and grey Brownian motion. To obtain convergent numerical scheme we transform the fractional diffusion equation into its weak form and apply the discretization of the Erd\'elyi-Kober fractional derivative. We prove the stability of the solution of the semi-discrete problem and its convergence to the exact solution. Due to the singular in time term appearing in the main equation the proposed method converges slower than first order. Finally, we provide the numerical analysis of the full-discrete problem using orthogonal expansion in terms of Hermite functions.

Citations (8)

Summary

We haven't generated a summary for this paper yet.