Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Using Random Perturbations to Mitigate Adversarial Attacks on Sentiment Analysis Models (2202.05758v1)

Published 11 Feb 2022 in cs.CL and cs.LG

Abstract: Attacks on deep learning models are often difficult to identify and therefore are difficult to protect against. This problem is exacerbated by the use of public datasets that typically are not manually inspected before use. In this paper, we offer a solution to this vulnerability by using, during testing, random perturbations such as spelling correction if necessary, substitution by random synonym, or simply dropping the word. These perturbations are applied to random words in random sentences to defend NLP models against adversarial attacks. Our Random Perturbations Defense and Increased Randomness Defense methods are successful in returning attacked models to similar accuracy of models before attacks. The original accuracy of the model used in this work is 80% for sentiment classification. After undergoing attacks, the accuracy drops to accuracy between 0% and 44%. After applying our defense methods, the accuracy of the model is returned to the original accuracy within statistical significance.

Citations (11)

Summary

We haven't generated a summary for this paper yet.