2000 character limit reached
On the classification of non-aCM curves on quintic hypersurfaces in $\mathbb{P}^3$ (2202.03635v1)
Published 8 Feb 2022 in math.AG and cs.CG
Abstract: In this paper, we call a sub-scheme of dimension one in $\mathbb{P}3$ a curve. It is well known that the arithmetic genus and the degree of an aCM curve $D$ in $\mathbb{P}3$ is computed by the $h$-vector of $D$. However, for a given curve $D$ in $\mathbb{P}3$, the two invariants of $D$ do not tell us whether $D$ is aCM or not. In this paper, we give a classification of curves on a smooth quintic hypersurface in $\mathbb{P}3$ which are not aCM.