Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the statistical theory of self-gravitating collisionless dark matter flow: high order kinematic and dynamic relations (2202.02991v3)

Published 7 Feb 2022 in astro-ph.CO, astro-ph.GA, and physics.flu-dyn

Abstract: To better understand the collisionless dark matter flow on different scales, statistical theory involving kinematic and dynamic relations must be developed for different types of flow, e.g. incompressible, constant divergence, and irrotational flow. This paper extends our previous work on the second-order statistics (Phys. Fluids 35, 077105) to high order statistics. Kinematic and dynamic relations were developed for dark matter flow on different scales. The results were validated by N-body simulations. On large scales, we found i) third-order velocity correlations can be related to density correlation or pairwise velocity; ii) the $p$th-order velocity correlations follow $\propto a{(p+2)/2}$ for odd $p$ and $\propto a{p/2}$ for even $p$, where $a$ is the scale factor; iii) the overdensity $\delta$ is proportional to density correlation on the same scale; iv) velocity dispersion on a given scale $r$ is proportional to the overdensity on the same scale. On small scales, i) a self-closed velocity evolution is developed by decomposing the velocity into motion in haloes and motion of haloes; ii) the evolution of vorticity and enstrophy are derived from the evolution of velocity; iii) dynamic relations are derived to relate second- and third-order correlations; iv) while the first moment of pairwise velocity follows $\langle\Delta u_L\rangle=-Har$ ($H$ is the Hubble parameter), the third moment follows $\langle(\Delta u_L)3\rangle\propto\varepsilon_uar$ that can be directly compared with simulations and observations, where $\varepsilon_u\approx10{-7}$m$2$/s$3$ is the constant rate for energy cascade; v) the $p$th order velocity correlations follow $\propto a{(3p-5)/4}$ for odd $p$ and $\propto a{3p/4}$ for even $p$. Finally, the combined kinematic and dynamic relations lead to exponential and one-fourth power-law velocity correlations on large and small scales, respectively.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com