Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Think-Aloud Verbalizations for Identifying User Experience Problems: Effects of Language Proficiency with Chinese Non-Native English Speakers (2202.02970v1)

Published 7 Feb 2022 in cs.HC

Abstract: Subtle patterns in users' think-aloud (TA) verbalizations (i.e., utterances) are shown to be telltale signs of user experience (UX) problems and used to build AI models or AI-assisted tools to help UX evaluators identify UX problems automatically or semi-automatically. Despite the potential of such verbalization patterns, they were uncovered with native English speakers. As most people who speak English are non-native speakers, it is important to investigate whether similar patterns exist in non-native English speakers' TA verbalizations. As a first step to answer this question, we conducted think-aloud usability testing with Chinese non-native English speakers and native English speakers using three common TA protocols. We compared their verbalizations and UX problems that they encountered to understand the effects of language and TA protocols. Our findings show that both language groups had similar amounts and proportions of verbalization categories, encountered similar problems, and had similar verbalization patterns that indicate UX problems. Furthermore, TA protocols did not significantly affect the correlations between verbalizations and problems. Based on the findings, we present three design implications for UX practitioners and the design of AI-assisted analysis tools.

Citations (1)

Summary

We haven't generated a summary for this paper yet.