Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
4 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

Steady Euler flows on $\mathbb{R}^3$ with wild and universal dynamics (2202.02848v1)

Published 6 Feb 2022 in math.DS and math.AP

Abstract: Understanding complexity in fluid mechanics is a major problem that has attracted the attention of physicists and mathematicians during the last decades. Using the concept of renormalization in dynamics, we show the existence of a locally dense set $\mathscr G$ of stationary solutions to the Euler equations in $\mathbb R3$ such that each vector field $X\in \mathscr G$ is universal in the sense that any area preserving diffeomorphism of the disk can be approximated (with arbitrary precision) by the Poincar\'e map of $X$ at some transverse section. We remark that this universality is approximate but occurs at all scales. In particular, our results establish that a steady Euler flow may exhibit any conservative finite codimensional dynamical phenomenon; this includes the existence of horseshoes accumulated by elliptic islands, increasing union of horseshoes of Hausdorff dimension $3$ or homoclinic tangencies of arbitrarily high multiplicity. The steady solutions we construct are Beltrami fields with sharp decay at infinity. To prove these results we introduce new perturbation methods in the context of Beltrami fields that allow us to import deep techniques from bifurcation theory: the Gonchenko-Shilnikov-Turaev universality theory and the Newhouse and Duarte theorems on the geometry of wild hyperbolic sets. These perturbation methods rely on two tools from linear PDEs: global approximation and Cauchy-Kovalevskaya theorems. These results imply a strong version of V.I. Arnold's vision on the complexity of Beltrami fields in Euclidean space.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.