Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive Fine-Tuning of Transformer-Based Language Models for Named Entity Recognition (2202.02617v1)

Published 5 Feb 2022 in cs.CL and cs.LG

Abstract: The current standard approach for fine-tuning transformer-based LLMs includes a fixed number of training epochs and a linear learning rate schedule. In order to obtain a near-optimal model for the given downstream task, a search in optimization hyperparameter space is usually required. In particular, the number of training epochs needs to be adjusted to the dataset size. In this paper, we introduce adaptive fine-tuning, which is an alternative approach that uses early stopping and a custom learning rate schedule to dynamically adjust the number of training epochs to the dataset size. For the example use case of named entity recognition, we show that our approach not only makes hyperparameter search with respect to the number of training epochs redundant, but also leads to improved results in terms of performance, stability and efficiency. This holds true especially for small datasets, where we outperform the state-of-the-art fine-tuning method by a large margin.

Citations (2)

Summary

We haven't generated a summary for this paper yet.