Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
90 tokens/sec
Gemini 2.5 Pro Premium
48 tokens/sec
GPT-5 Medium
22 tokens/sec
GPT-5 High Premium
18 tokens/sec
GPT-4o
100 tokens/sec
DeepSeek R1 via Azure Premium
78 tokens/sec
GPT OSS 120B via Groq Premium
467 tokens/sec
Kimi K2 via Groq Premium
208 tokens/sec
2000 character limit reached

Log-Sobolev inequality for near critical Ising models (2202.02301v2)

Published 4 Feb 2022 in math.PR, cs.DS, math-ph, and math.MP

Abstract: For general ferromagnetic Ising models whose coupling matrix has bounded spectral radius, we show that the log-Sobolev constant satisfies a simple bound expressed only in terms of the susceptibility of the model. This bound implies very generally that the log-Sobolev constant is uniform in the system size up to the critical point (including on lattices), without using any mixing conditions. Moreover, if the susceptibility satisfies the mean-field bound as the critical point is approached, our bound implies that the log-Sobolev constant depends polynomially on the distance to the critical point and on the volume. In particular, this applies to the Ising model on subsets of $\mathbb{Z}d$ when $d>4$. The proof uses a general criterion for the log-Sobolev inequality in terms of the Polchinski (renormalisation group) equation, a recently proved remarkable correlation inequality for Ising models with general external fields, the Perron--Frobenius theorem, and the log-Sobolev inequality for product Bernoulli measures.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.