Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Instability of financial markets by optimizing investment strategies investigated by an agent-based model (2202.00831v1)

Published 2 Feb 2022 in q-fin.CP, econ.GN, q-fin.EC, and q-fin.GN

Abstract: Most finance studies are discussed on the basis of several hypotheses, for example, investors rationally optimize their investment strategies. However, the hypotheses themselves are sometimes criticized. Market impacts, where trades of investors can impact and change market prices, making optimization impossible. In this study, we built an artificial market model by adding technical analysis strategy agents searching one optimized parameter to a whole simulation run to the prior model and investigated whether investors' inability to accurately estimate market impacts in their optimizations leads to optimization instability. In our results, the parameter of investment strategy never converged to a specific value but continued to change. This means that even if all other traders are fixed, only one investor will use backtesting to optimize his/her strategy, which leads to the time evolution of market prices becoming unstable. Optimization instability is one level higher than "non-equilibrium of market prices." Therefore, the time evolution of market prices produced by investment strategies having such unstable parameters is highly unlikely to be predicted and have stable laws written by equations. This nature makes us suspect that financial markets include the principle of natural uniformity and indicates the difficulty of building an equation model explaining the time evolution of prices.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com