Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

KSD Aggregated Goodness-of-fit Test (2202.00824v6)

Published 2 Feb 2022 in stat.ML, cs.LG, math.ST, stat.ME, and stat.TH

Abstract: We investigate properties of goodness-of-fit tests based on the Kernel Stein Discrepancy (KSD). We introduce a strategy to construct a test, called KSDAgg, which aggregates multiple tests with different kernels. KSDAgg avoids splitting the data to perform kernel selection (which leads to a loss in test power), and rather maximises the test power over a collection of kernels. We provide non-asymptotic guarantees on the power of KSDAgg: we show it achieves the smallest uniform separation rate of the collection, up to a logarithmic term. For compactly supported densities with bounded model score function, we derive the rate for KSDAgg over restricted Sobolev balls; this rate corresponds to the minimax optimal rate over unrestricted Sobolev balls, up to an iterated logarithmic term. KSDAgg can be computed exactly in practice as it relies either on a parametric bootstrap or on a wild bootstrap to estimate the quantiles and the level corrections. In particular, for the crucial choice of bandwidth of a fixed kernel, it avoids resorting to arbitrary heuristics (such as median or standard deviation) or to data splitting. We find on both synthetic and real-world data that KSDAgg outperforms other state-of-the-art quadratic-time adaptive KSD-based goodness-of-fit testing procedures.

Citations (13)

Summary

We haven't generated a summary for this paper yet.