Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Topological invariants for words of linear factor complexity (2202.00643v2)

Published 1 Feb 2022 in cs.FL

Abstract: Given a finite alphabet $\Sigma$ and a right-infinite word $w$ over the alphabet $\Sigma$, we construct a topological space ${\rm Rec}(w)$ consisting of all right-infinite recurrent words whose factors are all factors of $w$, where we work up to an equivalence in which two words are equivalent if they have the exact same set of factors (finite contiguous subwords). We show that ${\rm Rec}(w)$ can be endowed with a natural topology and we show that if $w$ is word of linear factor complexity then ${\rm Rec}(w)$ is a finite topological space. In addition, we note that there are examples which show that if $f:\mathbb{N}\to \mathbb{N}$ is a function that tends to infinity as $n\to \infty$ then there is a word whose factor complexity function is ${\rm O}(nf(n))$ such that ${\rm Rec}(w)$ is an infinite set. Finally, we pose a realization problem: which finite topological spaces can arise as ${\rm Rec}(w)$ for a word of linear factor complexity?

Summary

We haven't generated a summary for this paper yet.