Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DexVIP: Learning Dexterous Grasping with Human Hand Pose Priors from Video (2202.00164v1)

Published 1 Feb 2022 in cs.RO and cs.CV

Abstract: Dexterous multi-fingered robotic hands have a formidable action space, yet their morphological similarity to the human hand holds immense potential to accelerate robot learning. We propose DexVIP, an approach to learn dexterous robotic grasping from human-object interactions present in in-the-wild YouTube videos. We do this by curating grasp images from human-object interaction videos and imposing a prior over the agent's hand pose when learning to grasp with deep reinforcement learning. A key advantage of our method is that the learned policy is able to leverage free-form in-the-wild visual data. As a result, it can easily scale to new objects, and it sidesteps the standard practice of collecting human demonstrations in a lab -- a much more expensive and indirect way to capture human expertise. Through experiments on 27 objects with a 30-DoF simulated robot hand, we demonstrate that DexVIP compares favorably to existing approaches that lack a hand pose prior or rely on specialized tele-operation equipment to obtain human demonstrations, while also being faster to train. Project page: https://vision.cs.utexas.edu/projects/dexvip-dexterous-grasp-pose-prior

Citations (80)

Summary

We haven't generated a summary for this paper yet.