Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SUGAR: Efficient Subgraph-level Training via Resource-aware Graph Partitioning (2202.00075v3)

Published 31 Jan 2022 in cs.LG and cs.AI

Abstract: Graph Neural Networks (GNNs) have demonstrated a great potential in a variety of graph-based applications, such as recommender systems, drug discovery, and object recognition. Nevertheless, resource-efficient GNN learning is a rarely explored topic despite its many benefits for edge computing and Internet of Things (IoT) applications. To improve this state of affairs, this work proposes efficient subgraph-level training via resource-aware graph partitioning (SUGAR). SUGAR first partitions the initial graph into a set of disjoint subgraphs and then performs local training at the subgraph-level. We provide a theoretical analysis and conduct extensive experiments on five graph benchmarks to verify its efficacy in practice. Our results show that SUGAR can achieve up to 33 times runtime speedup and 3.8 times memory reduction on large-scale graphs. We believe SUGAR opens a new research direction towards developing GNN methods that are resource-efficient, hence suitable for IoT deployment.

Citations (5)

Summary

We haven't generated a summary for this paper yet.