Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unsupervised Network Intrusion Detection System for AVTP in Automotive Ethernet Networks (2202.00045v2)

Published 31 Jan 2022 in cs.LG, cs.CR, and cs.NI

Abstract: Network Intrusion Detection Systems (NIDSs) are widely regarded as efficient tools for securing in-vehicle networks against diverse cyberattacks. However, since cyberattacks are always evolving, signature-based intrusion detection systems are no longer adopted. An alternative solution can be the deployment of deep learning based intrusion detection system which play an important role in detecting unknown attack patterns in network traffic. Hence, in this paper, we compare the performance of different unsupervised deep and machine learning based anomaly detection algorithms, for real-time detection of anomalies on the Audio Video Transport Protocol (AVTP), an application layer protocol implemented in the recent Automotive Ethernet based in-vehicle network. The numerical results, conducted on the recently published "Automotive Ethernet Intrusion Dataset", show that deep learning models significantly outperfom other state-of-the art traditional anomaly detection models in machine learning under different experimental settings.

Citations (18)

Summary

We haven't generated a summary for this paper yet.