Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Equivariant higher Dixmier-Douady Theory for circle actions on UHF-algebras (2201.13364v2)

Published 31 Jan 2022 in math.OA and math.AT

Abstract: We develop an equivariant Dixmier-Douady theory for locally trivial bundles of $C*$-algebras with fibre $D \otimes \mathbb{K}$ equipped with a fibrewise $\mathbb{T}$-action, where $\mathbb{T}$ denotes the circle group and $D = \operatorname{End}\left(V\right){\otimes \infty}$ for a $\mathbb{T}$-representation $V$. In particular, we show that the group of $\mathbb{T}$-equivariant $$-automorphisms $\operatorname{Aut}_{\mathbb{T}}(D \otimes \mathbb{K})$ is an infinite loop space giving rise to a cohomology theory $E^{D,\mathbb{T}}(X)$. Isomorphism classes of equivariant bundles then form a group with respect to the fibrewise tensor product that is isomorphic to $E1{D,\mathbb{T}}(X) \cong [X, B\operatorname{Aut}_{\mathbb{T}}(D \otimes \mathbb{K})]$. We compute this group for tori and compare the case $D = \mathbb{C}$ to the equivariant Brauer group for trivial actions on the base space.

Summary

We haven't generated a summary for this paper yet.