Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Metric Distortion of Multiwinner Voting (2201.13332v1)

Published 31 Jan 2022 in cs.GT

Abstract: We extend the recently introduced framework of metric distortion to multiwinner voting. In this framework, $n$ agents and $m$ alternatives are located in an underlying metric space. The exact distances between agents and alternatives are unknown. Instead, each agent provides a ranking of the alternatives, ordered from the closest to the farthest. Typically, the goal is to select a single alternative that approximately minimizes the total distance from the agents, and the worst-case approximation ratio is termed distortion. In the case of multiwinner voting, the goal is to select a committee of $k$ alternatives that (approximately) minimizes the total cost to all agents. We consider the scenario where the cost of an agent for a committee is her distance from the $q$-th closest alternative in the committee. We reveal a surprising trichotomy on the distortion of multiwinner voting rules in terms of $k$ and $q$: The distortion is unbounded when $q \leq k/3$, asymptotically linear in the number of agents when $k/3 < q \leq k/2$, and constant when $q > k/2$.

Citations (29)

Summary

We haven't generated a summary for this paper yet.