Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

G$ \mathbf{^2} $VD Planner: Efficient Motion Planning With Grid-based Generalized Voronoi Diagrams (2201.12981v4)

Published 31 Jan 2022 in cs.RO

Abstract: In this paper, an efficient motion planning approach with grid-based generalized Voronoi diagrams (G$ \mathbf{2} $VD) is newly proposed for mobile robots. Different from existing approaches, the novelty of this work is twofold: 1) a new state lattice-based path searching approach is proposed, in which the search space is reduced to a novel Voronoi corridor to further improve the search efficiency; 2) an efficient quadratic programming-based path smoothing approach is presented, wherein the clearance to obstacles is considered to improve the path clearance of hard-constrained path smoothing approaches. We validate the efficiency and smoothness of our approach in various challenging simulation scenarios and outdoor environments. It is shown that the computational efficiency is improved by 17.1% in the path searching stage, and path smoothing with the proposed approach is 6.6 times faster than an advanced sparse-banded structure-based path smoothing approach and 53.3 times faster than the popular timed-elastic-band planner. A video showing outdoor navigation on our campus is available at https://youtu.be/iMXGthgvp58.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. Z. Chen, J. Alonso-Mora, X. Bai, D. D. Harabor, and P. J. Stuckey, “Integrated task assignment and path planning for capacitated multi-agent pickup and delivery,” IEEE Robotics and Automation Letters, vol. 6, no. 3, pp. 5816–5823, 2021.
  2. X. Bai, M. Cao, W. Yan, and S. S. Ge, “Efficient routing for precedence-constrained package delivery for heterogeneous vehicles,” IEEE Transactions on Automation Science and Engineering, vol. 17, no. 1, pp. 248–260, 2019.
  3. X. Bai, A. Fielbaum, M. Kronmüller, L. Knoedler, and J. Alonso-Mora, “Group-based distributed auction algorithms for multi-robot task assignment,” IEEE Transactions on Automation Science and Engineering, vol. 20, no. 2, pp. 1292–1303, 2022.
  4. G. Li, J. Xu, Z. Li, C. Chen, and Z. Kan, “Sensing and navigation of wearable assistance cognitive systems for the visually impaired,” IEEE Transactions on Cognitive and Developmental Systems, vol. 15, no. 1, pp. 122–133, 2022.
  5. Y. Song, Z. Li, G. Li, B. Wang, M. Zhu, and P. Shi, “Multi-sensory visual-auditory fusion of wearable navigation assistance for people with impaired vision,” IEEE Transactions on Automation Science and Engineering, 2023, doi: 10.1109/TASE.2023.3340335.
  6. H. Gao, X. Zhang, J. Yuan, and Y. Fang, “NEGL: Lightweight and efficient neighborhood encoding-based global localization for unmanned ground vehicles,” IEEE Transactions on Vehicular Technology, vol. 72, no. 6, pp. 7111–7122, 2023.
  7. T. Wen, K. Jiang, B. Wijaya, H. Li, M. Yang, and D. Yang, “TM3Loc: Tightly-coupled monocular map matching for high precision vehicle localization,” IEEE Transactions on Intelligent Transportation Systems, vol. 23, no. 11, pp. 20 268–20 281, 2022.
  8. T. Wen, D. Yang, K. Jiang, C. Yu, J. Lin, B. Wijaya, and X. Jiao, “Bridging the gap of lane detection performance between different datasets: Unified viewpoint transformation,” IEEE Transactions on Intelligent Transportation Systems, vol. 22, no. 10, pp. 6198–6207, 2021.
  9. T. Wen, K. Jiang, J. Miao, B. Wijaya, P. Jia, M. Yang, and D. Yang, “Roadside HD map object reconstruction using monocular camera,” IEEE Robotics and Automation Letters, vol. 7, no. 3, pp. 7722–7729, 2022.
  10. J. Wang, W. Chi, C. Li, and M. Q.-H. Meng, “Efficient robot motion planning using bidirectional-unidirectional RRT extend function,” IEEE Transactions on Automation Science and Engineering, vol. 19, no. 3, pp. 1859–1868, 2022.
  11. J. Wang, X. Jia, T. Zhang, N. Ma, and M. Q.-H. Meng, “Deep neural network enhanced sampling-based path planning in 3D space,” IEEE Transactions on Automation Science and Engineering, vol. 19, no. 4, pp. 3434–3443, 2022.
  12. X. Zhou, X. Yu, Y. Zhang, Y. Luo, and X. Peng, “Trajectory planning and tracking strategy applied to an unmanned ground vehicle in the presence of obstacles,” IEEE Transactions on Automation Science and Engineering, vol. 18, no. 4, pp. 1575–1589, 2021.
  13. Q. Bi, X. Zhang, J. Wen, Z. Pan, S. Zhang, R. Wang, and J. Yuan, “CURE: A hierarchical framework for multi-robot autonomous exploration inspired by centroids of unknown regions,” IEEE Transactions on Automation Science and Engineering, 2023, doi: 10.1109/TASE.2023.3285300.
  14. W. Chi, C. Wang, J. Wang, and M. Q.-H. Meng, “Risk-DTRRT-based optimal motion planning algorithm for mobile robots,” IEEE Transactions on Automation Science and Engineering, vol. 16, no. 3, pp. 1271–1288, 2019.
  15. J. Wang, W. Chi, C. Li, C. Wang, and M. Q.-H. Meng, “Neural RRT*: Learning-based optimal path planning,” IEEE Transactions on Automation Science and Engineering, vol. 17, no. 4, pp. 1748–1758, 2020.
  16. J. Wang, M. Q.-H. Meng, and O. Khatib, “EB-RRT: Optimal motion planning for mobile robots,” IEEE Transactions on Automation Science and Engineering, vol. 17, no. 4, pp. 2063–2073, 2020.
  17. S. Zhang, R. Cui, W. Yan, and Y. Li, “Dual-layer path planning with pose SLAM for autonomous exploration in GPS-denied environments,” IEEE Transactions on Industrial Electronics, vol. 71, no. 5, pp. 4976–4986, 2024.
  18. L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Probabilistic roadmaps for path planning in high-dimensional configuration spaces,” IEEE Transactions on Robotics and Automation, vol. 12, no. 4, pp. 566–580, 1996.
  19. S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,” The International Journal of Robotics Research, vol. 20, no. 5, pp. 378–400, 2001.
  20. S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion planning,” The International Journal of Robotics Research, vol. 30, no. 7, pp. 846–894, 2011.
  21. O. Khatib, “Real-time obstacle avoidance for manipulators and mobile robots,” The International Journal of Robotics Research, vol. 5, no. 1, pp. 90–98, 1986.
  22. X. Bai, W. Yan, M. Cao, and D. Xue, “Distributed multi-vehicle task assignment in a time-invariant drift field with obstacles,” IET Control Theory & Applications, vol. 13, no. 17, pp. 2886–2893, 2019.
  23. A. Ravankar, A. A. Ravankar, Y. Kobayashi, Y. Hoshino, and C.-C. Peng, “Path smoothing techniques in robot navigation: State-of-the-art, current and future challenges,” Sensors, vol. 18, no. 9, pp. 1–30, 2018.
  24. C. Rösmann, F. Hoffmann, and T. Bertram, “Kinodynamic trajectory optimization and control for car-like robots,” in Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2017, pp. 5681–5686.
  25. J. Deray, B. Magyar, J. Solà, and J. Andrade-Cetto, “Timed-elastic smooth curve optimization for mobile-base motion planning,” in Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2019, pp. 3143–3149.
  26. J. S. Smith, R. Xu, and P. Vela, “egoTEB: Egocentric, perception space navigation using timed-elastic-bands,” in Proceedings of the 2020 IEEE International Conference on Robotics and Automation, 2020, pp. 2703–2709.
  27. C. Rösmann, F. Hoffmann, and T. Bertram, “Integrated online trajectory planning and optimization in distinctive topologies,” Robotics and Autonomous Systems, vol. 88, pp. 142–153, 2017.
  28. X. Zhang, A. Liniger, A. Sakai, and F. Borrelli, “Autonomous parking using optimization-based collision avoidance,” in Proceedings of the 2018 IEEE Conference on Decision and Control, 2018, pp. 4327–4332.
  29. X. Zhang, A. Liniger, and F. Borrelli, “Optimization-based collision avoidance,” IEEE Transactions on Control Systems Technology, vol. 29, no. 3, pp. 972–983, 2021.
  30. Z. Zhu, E. Schmerling, and M. Pavone, “A convex optimization approach to smooth trajectories for motion planning with car-like robots,” in Proceedings of the 2015 IEEE Conference on Decision and Control, 2015, pp. 835–842.
  31. C. Liu, C.-Y. Lin, Y. Wang, and M. Tomizuka, “Convex feasible set algorithm for constrained trajectory smoothing,” in Proceedings of the 2017 American Control Conference, 2017, pp. 4177–4182.
  32. M. Likhachev and D. Ferguson, “Planning long dynamically feasible maneuvers for autonomous vehicles,” The International Journal of Robotics Research, vol. 28, no. 8, pp. 933–945, 2009.
  33. M. Pivtoraiko, R. A. Knepper, and A. Kelly, “Differentially constrained mobile robot motion planning in state lattices,” Journal of Field Robotics, vol. 26, no. 3, pp. 308–333, 2009.

Summary

We haven't generated a summary for this paper yet.