Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
Gemini 2.5 Pro Premium
52 tokens/sec
GPT-5 Medium
24 tokens/sec
GPT-5 High Premium
28 tokens/sec
GPT-4o
85 tokens/sec
DeepSeek R1 via Azure Premium
87 tokens/sec
GPT OSS 120B via Groq Premium
478 tokens/sec
Kimi K2 via Groq Premium
221 tokens/sec
2000 character limit reached

Nonlinear spatiotemporal instabilities in two-dimensional electroconvective flows (2201.12761v2)

Published 30 Jan 2022 in physics.flu-dyn

Abstract: This work studies the effects of a through-flow on two-dimensional electrohydrodynamic (EHD) flows of a dielectric liquid confined between two plane plates, as a model problem to further our understanding of the fluid mechanics in the presence of an electric field. The liquid is subjected to a strong unipolar charge injection from the bottom plate and a pressure gradient along the streamwise direction. Highly-accurate numerical simulations and weakly nonlinear stability analyses based on multiple-scale expansion and amplitude expansion methods are used to unravel the nonlinear spatiotemporal instability mechanisms in this combined flow. We found that the through-flow makes the hysteresis loop in the EHD flow narrower. In the numerical simulation of an impulse response, the leading and trailing edges of the wavepacket within the nonlinear regime are consistent with the linear ones, a result which we also verified against that in natural convection. In addition, as the bifurcation in EHD-Poiseuille flows is of a subcritical nature, nonlinear finite-amplitude solutions exist in the subcritical regime, and our calculation indicates that they are convectively unstable. The validity of the Ginzburg-Landau equation (GLE), derived from the weakly nonlinear expansion of Navier-Stokes equations and the Maxwell's equations in the quasi-electrostatic limit, serving as a physical reduced-order model for probing the spatiotemporal dynamics in this flow, has also been investigated. We found that the coefficients in the GLE calculated using amplitude expansion method can predict the absolute growth rates even when the parameters are away from the linear critical conditions, compared favourably with the local dispersion relation, whereas the validity range of the GLE derived from the multiple-scale expansion method is confined to the vicinity of the linear critical conditions.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.