Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neural Approximation of Graph Topological Features (2201.12032v4)

Published 28 Jan 2022 in cs.LG

Abstract: Topological features based on persistent homology capture high-order structural information so as to augment graph neural network methods. However, computing extended persistent homology summaries remains slow for large and dense graphs and can be a serious bottleneck for the learning pipeline. Inspired by recent success in neural algorithmic reasoning, we propose a novel graph neural network to estimate extended persistence diagrams (EPDs) on graphs efficiently. Our model is built on algorithmic insights, and benefits from better supervision and closer alignment with the EPD computation algorithm. We validate our method with convincing empirical results on approximating EPDs and downstream graph representation learning tasks. Our method is also efficient; on large and dense graphs, we accelerate the computation by nearly 100 times.

Citations (10)

Summary

We haven't generated a summary for this paper yet.