2000 character limit reached
Rational Solutions of First Order Algebraic Ordinary Differential Equations (2201.11378v1)
Published 27 Jan 2022 in math.CA and cs.SC
Abstract: Let $f(t,y,y')=\sum_{i=0}n a_i(t,y)y'i=0$ be an irreducible first order ordinary differential equation with polynomial coefficients. Eremenko in 1998 proved that there exists a constant $C$ such that every rational solution of $f(t,y,y')=0$ is of degree not greater than $C$. Examples show that this degree bound $C$ depends not only on the degrees of $f$ in $t,y,y'$ but also on the coefficients of $f$ viewed as the polynomial in $t,y,y'$. In this paper, we show that if $f$ satisfies $deg(f,y)<deg(f,y')$ or $\max_{i=0}^n \{deg(a_i,y)-2(n-i)\}\>0 $ then the degree bound $C$ only depends on the degrees of $f$ in $t,y,y'$, and furthermore we present an explicit expression for $C$ in terms of the degrees of $f$ in $t,y,y'$.