Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Analyzing Ta-Shma's Code via the Expander Mixing Lemma (2201.11166v1)

Published 26 Jan 2022 in cs.IT and math.IT

Abstract: Random walks in expander graphs and their various derandomizations (e.g., replacement/zigzag product) are invaluable tools from pseudorandomness. Recently, Ta-Shma used s-wide replacement walks in his breakthrough construction of a binary linear code almost matching the Gilbert-Varshamov bound (STOC 2017). Ta-Shma's original analysis was entirely linear algebraic, and subsequent developments have inherited this viewpoint. In this work, we rederive Ta-Shma's analysis from a combinatorial point of view using repeated application of the expander mixing lemma. We hope that this alternate perspective will yield a better understanding of Ta-Shma's construction. As an additional application of our techniques, we give an alternate proof of the expander hitting set lemma.

Citations (3)

Summary

We haven't generated a summary for this paper yet.