Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Intersection density of transitive groups with cyclic point stabilizers (2201.11015v1)

Published 26 Jan 2022 in math.CO

Abstract: For a permutation group $G$ acting on a set $V$, a subset $\mathcal{F}$ of $G$ is said to be an intersecting set if for every pair of elements $g,h\in \mathcal{F}$ there exists $v \in V$ such that $g(v) = h(v)$. The intersection density $\rho(G)$ of a transitive permutation group $G$ is the maximum value of the quotient $|\mathcal{F}|/|G_v|$ where $G_v$ is a stabilizer of a point $v\in V$ and $\mathcal{F}$ runs over all intersecting sets in $G$. If $G_v$ is a largest intersecting set in $G$ then $G$ is said to have the Erd\H{o}s-Ko-Rado (EKR)-property. This paper is devoted to the study of transitive permutation groups, with point stabilizers of prime order with a special emphasis given to orders 2 and 3, which do not have the EKR-property. Among other, constructions of infinite family of transitive permutation groups having point stabilizer of order $3$ with intersection density $4/3$ and of infinite families of transitive permutation groups having point stabilizer of order $3$ with arbitrarily large intersection density are given.

Summary

We haven't generated a summary for this paper yet.