Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The Newton method for affine phase retrieval (2201.11001v1)

Published 26 Jan 2022 in cs.IT and math.IT

Abstract: We consider the problem of recovering a signal from the magnitudes of affine measurements, which is also known as {\em affine phase retrieval}. In this paper, we formulate affine phase retrieval as an optimization problem and develop a second-order algorithm based on Newton method to solve it. Besides being able to convert into a phase retrieval problem, affine phase retrieval has its unique advantages in its solution. For example, the linear information in the observation makes it possible to solve this problem with second-order algorithms under complex measurements. Another advantage is that our algorithm doesn't have any special requirements for the initial point, while an appropriate initial value is essential for most non-convex phase retrieval algorithms. Starting from zero, our algorithm generates iteration point by Newton method, and we prove that the algorithm can quadratically converge to the true signal without any ambiguity for both Gaussian measurements and CDP measurements. In addition, we also use some numerical simulations to verify the conclusions and to show the effectiveness of the algorithm.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com