Reflexivity of Partitions Induced by Weighted Poset Metric and Combinatorial Metric (2201.10828v2)
Abstract: Let $\mathbf{H}$ be the Cartesian product of a family of finite abelian groups. Via a polynomial approach, we give sufficient conditions for a partition of $\mathbf{H}$ induced by weighted poset metric to be reflexive, which also become necessary for some special cases. Moreover, by examining the roots of the Krawtchouk polynomials, we establish non-reflexive partitions of $\mathbf{H}$ induced by combinatorial metric. When $\mathbf{H}$ is a vector space over a finite field $\mathbb{F}$, we consider the property of admitting MacWilliams identity (PAMI) and the MacWilliams extension property (MEP) for partitions of $\mathbf{H}$. With some invariance assumptions, we show that two partitions of $\mathbf{H}$ admit MacWilliams identity if and only if they are mutually dual and reflexive, and any partition of $\mathbf{H}$ satisfying the MEP is in fact an orbit partition induced by some subgroup of $\Aut_{\mathbb{F}}(\mathbf{H})$, which is necessarily reflexive. As an application of the aforementioned results, we establish partitions of $\mathbf{H}$ induced by combinatorial metric that do not satisfy the MEP, which further enable us to provide counter-examples to a conjecture proposed by Pinheiro, Machado and Firer in \cite{39}.