Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distantly supervised end-to-end medical entity extraction from electronic health records with human-level quality (2201.10463v1)

Published 25 Jan 2022 in cs.CL and cs.AI

Abstract: Medical entity extraction (EE) is a standard procedure used as a first stage in medical texts processing. Usually Medical EE is a two-step process: named entity recognition (NER) and named entity normalization (NEN). We propose a novel method of doing medical EE from electronic health records (EHR) as a single-step multi-label classification task by fine-tuning a transformer model pretrained on a large EHR dataset. Our model is trained end-to-end in an distantly supervised manner using targets automatically extracted from medical knowledge base. We show that our model learns to generalize for entities that are present frequently enough, achieving human-level classification quality for most frequent entities. Our work demonstrates that medical entity extraction can be done end-to-end without human supervision and with human quality given the availability of a large enough amount of unlabeled EHR and a medical knowledge base.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Alexander Nesterov (4 papers)
  2. Dmitry Umerenkov (4 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.