Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reinforcement Learning-Based Deadline and Battery-Aware Offloading in Smart Farm IoT-UAV Networks (2201.10361v5)

Published 25 Jan 2022 in cs.NI

Abstract: Unmanned aerial vehicles (UAVs) with mounted base stations are a promising technology for monitoring smart farms. They can provide communication and computation services to extensive agricultural regions. With the assistance of a Multi-Access Edge Computing infrastructure, an aerial base station (ABS) network can provide an energy-efficient solution for smart farms that need to process deadline critical tasks fed by IoT devices deployed on the field. In this paper, we introduce a multi-objective maximization problem and a Q-Learning based method which aim to process these tasks before their deadline while considering the UAVs' hover time. We also present three heuristic baselines to evaluate the performance of our approaches. In addition, we introduce an integer linear programming (ILP) model to define the upper bound of our objective function. The results show that Q-Learning outperforms the baselines in terms of remaining energy levels and percentage of delay violations.

Citations (13)

Summary

We haven't generated a summary for this paper yet.