Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 90 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 22 tok/s
GPT-5 High 36 tok/s Pro
GPT-4o 91 tok/s
GPT OSS 120B 463 tok/s Pro
Kimi K2 213 tok/s Pro
2000 character limit reached

Normal cones corresponding to credal sets of lower probabilities (2201.10161v2)

Published 25 Jan 2022 in math.PR and math.OC

Abstract: Credal sets are one of the most important models for describing probabilistic uncertainty. They usually arise as convex sets of probabilistic models compatible with judgments provided in terms of coherent lower previsions or more specific models such as coherent lower probabilities or probability intervals. In finite spaces, credal sets usually take the form of convex polytopes. Many properties of convex polytopes can be derived from their normal cones, which form polyhedral complexes called normal fans. We analyze the properties of normal cones corresponding to credal sets of coherent lower probabilities. For two important classes of coherent lower probabilities, 2-monotone lower probabilities and probability intervals, we provide a detailed description of the normal fan structure. These structures are related to the structure of the extreme points of the credal sets. To arrive at our main results, we provide some general results on triangulated normal fans of convex polyhedra and their adjacency structure.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube