Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Optimization Landscape of Dynamic Output Feedback Linear Quadratic Control (2201.09598v3)

Published 24 Jan 2022 in math.OC, cs.SY, and eess.SY

Abstract: The convergence of policy gradient algorithms hinges on the optimization landscape of the underlying optimal control problem. Theoretical insights into these algorithms can often be acquired from analyzing those of linear quadratic control. However, most of the existing literature only considers the optimization landscape for static full-state or output feedback policies (controllers). We investigate the more challenging case of dynamic output-feedback policies for linear quadratic regulation (abbreviated as dLQR), which is prevalent in practice but has a rather complicated optimization landscape. We first show how the dLQR cost varies with the coordinate transformation of the dynamic controller and then derive the optimal transformation for a given observable stabilizing controller. One of our core results is the uniqueness of the stationary point of dLQR when it is observable, which provides an optimality certificate for solving dynamic controllers using policy gradient methods. Moreover, we establish conditions under which dLQR and linear quadratic Gaussian control are equivalent, thus providing a unified viewpoint of optimal control of both deterministic and stochastic linear systems. These results further shed light on designing policy gradient algorithms for more general decision-making problems with partially observed information.

Citations (22)

Summary

We haven't generated a summary for this paper yet.